Volume 16, Number 11–November 2010
Research
Genetic Structure of Plasmodium falciparum and Elimination of Malaria, Comoros Archipelago
Stanislas Rebaudet,1 Hervé Bogreau,1 Rahamatou Silaï, Jean-François Lepère, Lionel Bertaux, Bruno Pradines, Jean Delmont, Philippe Gautret, Philippe Parola, and Christophe Rogier 
Author affiliations: Institute for Biomedical Research of the French Army, Marseille, France (S. Rebaudet, H. Bogreau, L. Bertaux, B. Pradines, C. Rogier); Université de la Méditerranée, Marseille (J. Delmont, P. Parola); Assistance Publique–Hôpitaux de Marseille, Marseille (P. Gautret); Programme National de Lutte contre le Paludisme, Moroni, Comoros (R. Silaï); and Dispensaire de Bandraboua, Mayotte, France (J.-F. Lepère)

Author affiliations: Institute for Biomedical Research of the French Army, Marseille, France (S. Rebaudet, H. Bogreau, L. Bertaux, B. Pradines, C. Rogier); Université de la Méditerranée, Marseille (J. Delmont, P. Parola); Assistance Publique–Hôpitaux de Marseille, Marseille (P. Gautret); Programme National de Lutte contre le Paludisme, Moroni, Comoros (R. Silaï); and Dispensaire de Bandraboua, Mayotte, France (J.-F. Lepère)
Rebaudet S, Bogreau H, Silaï R, Lepère J-F, Bertaux L, Pradines B, et al. Genetic structure of Plasmodium falciparum and malaria elimination, Comoros archipelago. Emerg Infect Dis [serial on the Internet]. 2010 Nov [date cited]. http://www.cdc.gov/EID/content/16/11/1686.htm
Figure 2 |
![]() |
Figure 2. Genetic differentiation (Fst) betweenPlasmodium falciparumpopulations from the islands of Grande Comore (GC), Moheli (MOH), Anjouan (ANJ), and Mayotte (MAY) and from Marseille, France (MARS), according to 6 microsatellite loci... |
Abstract
The efficacy of malaria control and elimination on islands may depend on the intensity of new parasite inflow. On the Comoros archipelago, where falciparum malaria remains a major public health problem because of spread of drug resistance and insufficient malaria control, recent interventions for malaria elimination were planned on Moheli, 1 of 4 islands in the Comoros archipelago. To assess the relevance of such a local strategy, we performed a population genetics analysis by using multilocus microsatellite and resistance genotyping of Plasmodium falciparum sampled from each island of the archipelago. We found a contrasted population genetic structure explained by geographic isolation, human migration, malaria transmission, and drug selective pressure. Our findings suggest that malaria elimination interventions should be implemented simultaneously on the entire archipelago rather than restricted to 1 island and demonstrate the necessity for specific chemoresistance surveillance on each of the 4 Comorian islands.
The efficacy of malaria control and elimination on islands may depend on the intensity of new parasite inflow. On the Comoros archipelago, where falciparum malaria remains a major public health problem because of spread of drug resistance and insufficient malaria control, recent interventions for malaria elimination were planned on Moheli, 1 of 4 islands in the Comoros archipelago. To assess the relevance of such a local strategy, we performed a population genetics analysis by using multilocus microsatellite and resistance genotyping of Plasmodium falciparum sampled from each island of the archipelago. We found a contrasted population genetic structure explained by geographic isolation, human migration, malaria transmission, and drug selective pressure. Our findings suggest that malaria elimination interventions should be implemented simultaneously on the entire archipelago rather than restricted to 1 island and demonstrate the necessity for specific chemoresistance surveillance on each of the 4 Comorian islands.
No comments:
Post a Comment